Abstract

We report on how to increase transmittance of a 0.2 mm thick polycarbonate (PC) film by periodic subwavelength anti-reflection structures in the visible spectral range. Subwavelength anti-reflection structures like moth-eyes are fabricated into the polycarbonate substrate itself by thermal nano-imprinting lithography (TH-NIL), which uses silicon stamps that have periodic structures such as gratings (lines and spaces) and pillared dots, and are fabricated by laser interference lithography (LIL) and transformer coupled plasma etching. To increase transmittance of a polycarbonate film, we control the periods and shapes of patterns, the number of patterned surfaces, and the overlapping direction of patterns that are fabricated into its surfaces. As a result of this, we show that average transmittance improves as the pattern period gets shorter and as both surfaces of the film are patterned. We also show that the spectrum range gets larger as the pattern period gets shorter and is determined by the longer pattern period in the case of designing a film to have different pattern period on its surfaces. The maximum average transmittance of a polycarbonate film increases up to approximately 6% compared to a bare sample in the 470-800 nm spectral range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.