Abstract

An algorithm for stabilizing linear iterative schemes is developed in this study. The recursive projection method is applied in order to stabilize divergent numerical algorithms. A criterion for selecting the divergent subspace of the iteration matrix with an approximate eigenvalue problem is introduced. The performance of the present algorithm is investigated in terms of storage requirements and CPU costs and is compared to the original Krylov criterion. Theoretical results on the divergent subspace selection accuracy are established. The method is then applied to the resolution of the linear advection–diffusion equation and to a sensitivity analysis for a turbulent transonic flow in the context of aerodynamic shape optimization. Numerical experiments demonstrate better robustness and faster convergence properties of the stabilization algorithm with the new criterion based on the approximate eigenvalue problem. This criterion requires only slight additional operations and memory which vanish in the limit of large linear systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call