Abstract

Sputtered aluminum nitride (AlN) thin films were characterized by Piezoresponse Force Microscopy (PFM) technique using a methodology to decrease the contribution of the electrostatic forces to obtain a pure piezoelectric response. Our method is based on the sweeping of the DC voltage applied to the Atomic Force Microscope (AFM) tip under a fixed AC field to evaluate the contact surface potential difference (VCPD) between the tip and the sample used to measure the proper AlN piezoelectric coefficient (d33,eff), minimizing the electrostatic contribution. Kelvin probe Force Microscopy (KPFM) was employed as reference standard technique to measure the surface potential, confirming the reliability of the proposed experimental procedure on ceramic piezoelectric films, and simultaneously overcoming the disadvantages of the KPFM technique. The capability to tune surface potential of materials over a wide range of values opens new perspectives for the design of devices with changeable surface potential.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.