Abstract

The article is devoted to solving the urgent problem of improving the method of nondestructive testing of the condition of non-rigid road clothes. In addition to the previously developed approach to determining the mechanical parameters of materials of structural layers of nonrigid road coverings based on solving the inverse coefficient problem of restoring operational elastic modules providing specified displacement fields, an approach was developed that allows determining the parameters of energy dissipation in the structure of multilayer road pavement based on the correction of dynamic hysteresis loops recorded in the field and calculated using mathematical model of dynamic VAT. The article presents the results of numerical simulation of dynamic hysteresis loops for two different variants of multilayer structures. The possibilities of correcting the shape of hysteresis loops and their area by varying the tangents of the energy loss angles in layers of a multilayer medium and the elastic modulus of a homogeneous half-space are shown. The complex correction of the elastic modulus values of the structural layers of road clothes and the calculated loops of dynamic hysteresis made it possible to fully take into account the processes of energy attenuation at a distance from the point of application of the load. During the correction, it was found that the values of the elastic modulus of the road layers and the tangents of the loss angles in them have a complex effect on the areas of dynamic hysteresis loops and the nature of energy attenuation at a distance from the point of application of the load. At the same time, the elastic modulus of the underlying half-space is not limited in thickness to the greatest extent on the area of dynamic hysteresis loops (which led to an increase in the elastic modulus of the underlying half-space from 120 and 150 MPa for road construction variants with a reinforced and non-reinforced base to 170 and 160 MPa, respectively), and a decrease in the dissipated energy at a distance from the point of application This is primarily due to the tangent of the angle of energy loss in the half-space. The obtained values of the tangents of the loss angles are obviously related to the patterns of energy dissipation at the boundaries of the contacting layers of the pavement, and also take into account all possible anomalies and delaminations in the calculated structures. Within the framework of this article, calculated hysteresis loops on the surface of the pavement were obtained for the first time, the deformation energy was calculated based on their areas, and the possibility of their comparison with those registered experimentally was proved.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call