Abstract
Magnetic properties of grain-oriented materials are affected by hysteresis, anisotropy and dynamic effects. The attempts to describe dynamic hysteresis loops are usually limited to the rolling direction (RD). On the other hand, modelling of magnetic properties for the transverse direction (TD) is important for numerical analysis of core-joints and corner regions in transformers. For this direction, hysteresis loops reveal complex shapes particularly for dynamic magnetization conditions. This paper presents a comprehensive approach for modelling of dynamic hysteresis loops in RD and TD. This work uses the magnetic viscosity-based approach, which is able to describe irregular widening of dynamic loops. The loss separation scheme is also considered for both principal directions. Variations of loss components with frequency for both directions are discussed. The computed dynamic loops in RD and TD are in a close agreement with experimental ones.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.