Abstract
This article discusses a new robust control technique that enables the DC-DC boost converter driving a permanent magnet direct current (PMDC) motor to operate in high static and dynamic performances. The new technique is based on the design of a both linear quadratic regulator (LQR) and linear quadratic regulator-proportional integral (LQR-PI) type controllers, which have the advantage of eliminating oscillations, overshoots and fluctuations on different characteristics in steady-state system operation. In order to increase the output voltage, the LQR regulator is combined with a first-order system represented in the form of a closed-loop transfer function, the latter raising the output voltage to 24 volts, this voltage is enough to drive the permanent magnet direct current motor. The contribution of this paper is the creation of a robust control system represented in the form of a hybrid corrector able to regulate steady-state and transient disturbances and oscillations as well as to increase DC-DC boost converter output voltage for the PMDC motor to operate at rated voltage. The results of the three control techniques are validated by MATLAB Simulink.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have