Abstract

AbstractHighly (0001)-oriented films of YMnO3 were grown on n-type Si(100) substrates by a chemical solution deposition with a modified precursor solution. Spin-coated films were crystallized by rapid thermal annealing at 650 °C, and showed improved structural and electrical properties. Capacitance-voltage (C-V) measurements at 1 MHz showed a counterclockwise hysteresis, with a memory window of 1.9 V at 9 V, due to ferroelectric polarization, and a dielectric constant of 25. The effects of mobile ionic charge and effective interface charge in the C-V measurements were found to be small by investigating the bias sweep rate dependence and flat-band voltage shift, respectively. The interface trap density near the Si midgap was obtained to be about 1.3 × 1011 cm−2eV−1 through conductance measurements. Current-voltage characteristics showed a leakage current density of 16 nA/cm2 at 3 V. An asymmetric polarization-voltage (P-V) hysteresis curve became symmetric one with a remanent polarization value of 0.1 μ C/cm2 under He-Ne laser illumination. The depolarization field in the ferroelectric film and charge compensation by the light-generated minority carriers may be responsible for the observed P-V characteristics. The low temperature fabrication of this YMnO3 film showed good structural and electrical properties for application to nonvolatile ferroelectric memory devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.