Abstract

A new model for predicting the acoustical properties of fibrous materials, the characteristic impedance Zc and the propagation constant γ, only from their airflow resistivity was constructed. The Delany-Bazley and Miki models are well known as conventional prediction methods. Their formulas are similar, and their difference is in the values of coefficients and degrees in the formulas. In this research, the acoustical properties and airflow resistivity of fibrous materials, 15 types of glass wool and 9 types of rock wool, were measured and compared with values obtained by conventional methods of prediction. It was found that the introduction of an expression involving the common logarithm improved the conventional models. This new model is more effective than the conventional models, particularly for the prediction for high-density fibrous materials where f⁄σ 0.1 m3/kg.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.