Abstract
It is common for fibrous porous materials to be used in high temperature applications such as automotive and gas turbine exhaust silencers. Understanding the effect of temperature on the acoustic properties of these materials is crucial when attempting to predict silencer performance. This requires knowledge of the bulk acoustic properties of the porous materials and so this article aims to quantify the effect of temperature on the bulk acoustic properties of three fibrous materials: rock wool, basalt wool and an E-glass fibre. Measurements are undertaken here using a standard impedance tube that has been modified to accommodate temperatures of up to 500°C. It is shown that measured data for the bulk acoustic properties may be collapsed using a standard Delany and Bazley curve fitting methodology provided one modifies the properties of the material flow resistivity and air to account for a change in temperature. Moreover, by using a previously proposed power law describing the dependence of the flow resistivity with temperature, one may successfully collapse data measured at every temperature and obtain the Delany and Bazley coefficients in the usual way. Accordingly, to predict the bulk acoustic properties of a fibrous material at elevated temperatures it is necessary only to measure these properties at room temperature, and then to apply the appropriate temperature corrections to the properties of the material flow resistivity and air when using the Delany and Bazley formulae.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.