Abstract

AbstractDuring rapid thermal processing (RTP) of a semiconductor wafer, maintenance of nearuniform wafer temperature distribution is necessary. This paper addresses the problem of insuring temperature uniformity in a cylindrical RTP system with multiple concentric circular lamps.A numerical technique is presented for optimizing steady-state temperature distribution by independently varying the power radiated by each lamp. It is shown for a simulated system, over a wide range of temperature setpoints, that the temperature uniformity achievable with multivariable (“multiple knob”) control of lamp powers is significantly better than that achievable with scalar (“single knob”) control.The difficulties of using scalar control in RTP are more severe in the case of temperature trajectory design than in the case of steady-state temperature maintenance. For example, with scalar control the rate of temperature increase during ramping is limited because temperature nonuniformity can cause slip defects in the wafer. A numerical technique is presented for designing multivariable lamp power trajectories to obtain near-optimal temperature uniformity while wafer temperature tracks a specified ramp, resulting in slip-free ramp rates much faster than those achievable with scalar control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.