Abstract

Three different oxide/oxide ceramic matrix composite (CMC) materials are described. Design concepts for the attachment of the CMC component to the metal structure of the gas turbine are developed in a first work stream focused on the combustion chamber and the turbine seal segment. Issues like environmental barrier coating (EBC)/thermal barrier coatings (TBC), application and volatilization, allowance for the different thermal expansion and the mechanical fixation are addressed. The design work is accompanied by CFD and FEM simulations. A variation of the microstructural design of the three oxide/oxide CMC materials in terms of different fiber architecture and processing of matrix are considered. Also, mechanical properties of these variations are evaluated. The material concepts are developed further in a second work stream. The CMCs are tested in various loading modes (tension, compression, shear, off-axis loading) from room temperature to maximum application temperature focusing on tensile creep behavior. By modification of the matrix and the fiber-matrix interface as well as EBC coatings, the high temperature stability and the insulation performance are enhanced. An outline of the “High Performance Oxide Ceramic”-program HiPOC for the following years is given, including manufacturing of a high-pressure tubular combustor and turbine seal segments from the improved materials as technology samples, for which validation testing up to technology readiness level 4 is scheduled for 2011.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call