Abstract

In the framework of the High Performance Oxide Ceramics program (HiPOC), three different oxide/oxide ceramic matrix composite (CMC) materials are studied for a combustion chamber application in continuation of the work reported in Gerendas et al. [1]. A variation in the micro-structural design of the three CMC materials in terms of different fiber architecture and matrix processing are considered in a first work stream. By modification of the matrix and the fiber-matrix interface as well as the application of an environmental barrier coating (EBC), the high temperature stability is enhanced. Furthermore, design concepts for the attachment of the CMC component to the metal structure of the engine are finalized in a second work stream. Issues like sealing of cooling leakage paths, allowance for the different thermal expansion and the mechanical fixation are addressed. An interim standard of the mechanical attachment scheme is studied on a shaker table. Also the friction coefficient between the metallic and ceramic components is analyzed in order to set the proper tightening torque. The manufacturing of the CMC combustor is improved in several iterations in order to achieve a high quality material with optimized fiber architecture. Afterwards, two CMC materials are selected for the combustion testing and the finalized design of the metallic and CMC components is manufactured. A fit check is performed prior to EBC application and laser drilling of the effusion holes in order to evaluate the impact of the manufacturing tolerances on the function of the sealing and attachment scheme and to correct small issues at this stage. First results from the validation testing in a high-pressure tubular combustion rig up to a Technology Readiness Level 4 (TRL4) are reported.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call