Abstract

Abstract Because a gravimeter records the sum of all gravity variations associated with mass redistribution in its near and far surrounding the investigation of a single special gravity effect (e.g. Earth tides or core modes) requires the reduction of all other effects from the data. In our study, we are dealing with the ocean loading effect. High-precision tidal gravity and atmospheric pressure observations are carried out at the station Rio Carpintero in combination with tide gauge measurements at the coast of Santiago de Cuba. The gravity data are subjected to atmospheric pressure and ocean loading corrections with different oceanic tidal models. In order to test the efficiency of the different ocean loading corrections the gravity data are analysed for various tidal waves and the determined Earth tide parameters are compared with model parameters. Additionally, tide gauge measurements are analysed and used for improving the ocean loading correction on gravity data. The results show that present-day global oceanic tidal models, e.g. NAO99b and FES2002 in combination with the ocean loading calculation program (LOAD97), are not sufficient for a complete correction of this effect. With our approach, the discrepancies between the observed Earth tide parameters and those from theoretical prediction for main waves in diurnal and semidiurnal tidal bands are further reduced when taking into account the tide gauge data recorded offshore. After additional removal of oceanic signals, based on the tide gauge data, the analysed Earth tide parameters are closer to the Wahr–Dehant model. The improvement is up to 4% and the noise is reduced from 20 nm/s2 to 10 nm/s2 within the examined period range of 10–1500 min. Therefore, high-precision gravity measurements (e.g. with Superconducting Gravimeters), especially for stations near the coastal lines, should take into account tide gauge measurements for the ocean loading correction. With improved ocean loading correction and reduced noise other gravity effects can be determined more precisely.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call