Abstract
This work describes a novel experimental design aimed at building a calibration set constituted by samples containing a different number of components. The algorithm performs a reiteration process to maintain the number of samples at the lower value as possible and to ensure an homogeneous presence of all the concentration levels. The mixture design was applied to a drug system composed by one-to-four components in different combination. The resolution of the system was performed by three multivariate UV spectrophotometric methods utilizing principal component regression (PCR) and partial last squares (PLS1 and PLS2) algorithms. The calibration set was composed by 61 references on four concentration levels, including 15 samples for each quaternary, ternary and binary composition and 16 one-component samples. The calibration models were optimized through a careful selection of number of factors and wavelength zones, in such a way as to remove interferences from instrumental noise and excipients present in the pharmaceutical formulations. The prediction power of the regression models were verified and compared by analysis of an external prediction set. The models were finally used to assay pharmaceutical specialities containing the studied drugs in one-to-four formulations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.