Abstract

The object of research is gas-dynamic vortex processes in heterogeneous polydisperse flows. One of the most problematic issues in engine building is the completeness of combustion and the rate of fuel burnout in the given coordinates on the allotted hourly interval in the combustion chamber. These indicators, in turn, determine stringent requirements for used fuels in terms of thermophysical parameters that affect sawing, evaporation and mixing with an oxidizer. In the course of the study, methods of mathematical modeling were used based on the theory of similarity. Methods have been developed for preparing a combustible mixture for detonation-free combustion of a cheap alternative fuel. A method for assessing the quality of spraying low cetane fuel is proposed. A mathematical model is obtained for calculating the change in the parameters of the quality of atomization and the differential characteristics of fuel injection. This is necessary for theoretical studies of gas-dynamic processes in additional power systems for diesel engines in an unsteady three-dimensional flow with variable parameters of a polydisperse flow of a combustible mixture. It has been proven that with a decrease in the camshaft rotational speed, the injection speed will be insufficient to achieve the required spray quality due to a decrease in the speed. This made it possible to redesign the additional system using a separate dual fuel supply. Research samples of an additional power supply system for the ЯМЗ–24 ОН diesel engine (Yaroslavl Motor Plant, Russia) have been developed. Comparative tests of the engine operation on stable gas condensate with the main fuel equipment and an additional system have been carried out. Oscillograms of the tests were obtained and analyzed. The research results provided the basis for the use of low cetane cheap gas condensate in diesel engines. This will improve the economic, power and environmental performance of the engines. Compared to standard cetane fuels, the price of fuel will decrease by 40 %, engine power will increase by 20 %, and the environmental performance of exhaust gases will decrease by 10–30 %.

Highlights

  • I.e. piston, gas turbine or other design, the problem of increasing the combustion efficiency is being solved for about a century, since economic, power and environmental indicators depend on it [1]

  • Let’s propose the solution of these problems by using an additional power system in the form of a vortex evaporator-mixer, which operates on the energy of exhaust gases or a gas turbocharger for the use of cheap fuel and an increase in the thermal efficiency of a diesel engine (Fig. 1)

  • The working pressure in the evaporator-mixers was chosen equal to the boost pressure, which corresponds to the steady load mode of the ЯМЗ–24 ОН diesel engine (Yaroslavl Motor Plant, Russia), Ne = 380 kW, n = 1200 1/min, DpD = 0.3 MPa, δns = 190 kN/m, Fvs = 80 N, Fns = 195 N, qA0 = 82 mm3/cycle, qAD = 121 mm3/cycle

Read more

Summary

Introduction

I.e. piston, gas turbine or other design, the problem of increasing the combustion efficiency is being solved for about a century, since economic, power and environmental indicators depend on it (completeness) [1]. [4,5,6] Solving this problem will contribute to improving energy efficiency and conserving energy resources. An important scientific and technical task of weakening this argument follows – to find opportunities and scientifically substantiate their implementation by preparing alternative fuels for combustion so that the power, economic and environmental indicators of the engines would be at the level of indicators, as when operating on standard fuels. The aim of research is to improve the processes of mixture formation and combustion of low cetane complete in diesel engines

Methods of research
Research results and discussion
Findings
Conclusions
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call