Abstract

BackgroundReconstruction of muscle defects remains a challenge. Our work assessed the potential of an engineered construct made of a human acellular collagen matrix (HACM) seeded with porcine mesenchymal stem cells (MSCs) to reconstruct abdominal wall muscle defects in a rodent model. MethodsThis study compared 2 sources of MSCs (bone-marrow, BMSCs, and adipose, ASCs) in vitro and in vivo for parietal defect reconstruction. Cellular viability and growth factor release (VEGF, FGF-Beta, HGF, IGF-1, TGF-Beta) were investigated under normoxic/hypoxic culture conditions. Processed and recellularized HACMs were mechanically assessed. The construct was tested in vivo in full thickness abdominal wall defect treated with HACM alone vs. HACM+ASCs or BMSCs (n=14). Tissue remodeling was studied at day 30 for neo-angiogenesis and muscular reconstruction. ResultsA significantly lower secretion of IGF was observed with ASCs vs. BMSCs under hypoxic conditions (−97.6%, p<0.005) whereas significantly higher VEGF/FGF secretions were found with ASCs (+92%, p<0.001 and +72%, p<0.05, respectively). Processing and recellularization did not impair the mechanical properties of the HACM. In vivo, angiogenesis and muscle healing were significantly improved by the HACM+ASCs in comparison to BMSCs (p<0.05) at day 30. ConclusionA composite graft made of an HACM seeded with ASCs can improve muscle repair by specific growth factor release in hypoxic conditions and by in vivo remodeling (neo-angiogenesis/graft integration) while maintaining mechanical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call