Abstract
The geotechnical properties of clay soil and its mixtures with different proportions (0.75%, 0.85%, 1%, and 1.15%) of Agar Gum biopolymer and Ferrochromium Slag (0.25%, 0.50%, 0.75%, and 1%), having various curing times and freeze-thaw cycles, were studied through a series of soil mechanical tests to investigate possibilities to improve its undesired/problematic plasticity, compaction, and shear strength characteristics. The results revealed that treatment with an optimal ratio of 1% Agar Gum and 1% Ferrochromium Slag alone, as well as together with, improved the geotechnical properties of the clay soil considerably. Both the unconfined and shear strength properties, along with the cohesion and internal friction angle, increased as much as 47 to 173%, depending on the curing time. The higher the curing time, the higher the shear strength, cohesion, and internal friction angle are up to 21 days. Deteriorating the soil structure and/or fabric, freeze-thaw cycles, however, seem to have an adverse effect on the strength. The higher the freeze-thaw cycle, the lower the shear strength, cohesion, and internal friction angle. Also, some improvements in the plasticity and compaction properties were determined, and environmental concerns regarding Ferrochromium Slag usage have been addressed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.