Abstract

Performance of a gas turbine is mainly depends on the inlet air temperature. The power output of a gas turbine depends on the flow of mass through it. This is precisely the reason why on hot days, when air is less dense, power output falls off. A rise of 1°C temperature of inlet air decreases the power output by 1%. The aim of this paper is to review up to date techniques that were developed to cool inlet air to gas turbine. The techniques including the mechanical chillers, media type evaporative coolers and absorption chillers have been reviewed. It is found that the power consumption of the cool inlet air is of considerable concern since it decreases the net power output of gas turbine. In addition, the mechanical chiller auxiliary power consumption is very high compared to media type evaporative coolers. Furthermore, the reviewed works revealed that the efficiency of evaporative cooler largely depends on moisture present in the air. The gas turbine power augmentation through inlet air chilling is effectively used to boost power during high ambient temperature usually synchronous with on-peak power generation, allowing levelling of gas turbine power output. Key words: Gas turbine, absorption cooler, evaporative cooler, chiller.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.