Abstract

Purpose. Analysis of the effectiveness of using methods of heat and humidity treatment of flue gases to improve the operational modes of chimneys for heating gas-consuming boiler plants with heat recovery systems. Methodology. The known normative methods of thermal calculation of boiler plants and methods of dispersion of pollutants emitted by chimneys of these plants were used. To determine the thermal and moisture parameters of flue gases during their deep cooling, an original method developed at the Institute of Engineering Thermophysics of the National Academy of Sciences of Ukraine was used. Findings. The efficiency of applying the proposed thermal methods to improve environmental conditions and magnification of the operational reliability of chimneys of boiler plants equipped with systems for deep heat recovery of exhaust gases has been studied. The methods which are usually used in boiler-houses to prevent condensate formation in chimneys were considered. Adecrease in the maximum ground-level concentration of nitrogen oxides and carbon monoxide emissions was determined when using these methods. A comparative analysis of the effectiveness of the proposed methods for brick and metal chimneys in different modes of operation of heating boiler plants has been carried out. It is shown that these methods allow improving significantly (up to 32%) the indicators of ecological efficiency of chimneys in conditions of 58% reduction of fuel use in boilers. Originality. For the first time to improve the environmental performance of chimneys of boiler plants with deep heat recovery systems of flue gases has been justified the use of thermal methods of their heat and moisture treatment. Practical value. The possibility of using the results of the work in the design of heat recovery systems for gas-consuming heating boilers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.