Abstract

Abstract Silicon working as anode for Li-ion batteries has attracted much attention due to its high capacity (∼4200 mAh g−1). However, due to the large volume expansion during lithiation, the capacity of silicon fades very fast. In this systematic study, we focus on the issue to fight the capacity fading. Results show that Si with sodium carboxymethyl cellulose (Na-CMC) as a polymer binder exhibits a better cyclability than that with poly(vinylidene fluoride) (PVDF). Yet differing from the system used in PVDF, the addition of vinylene carbonate (VC) does not improve or even worsens the performance of the system using Na-CMC. In addition, the small particle size of Si, a large amount of carbon black (CB), the good choice of electrolyte/conducting salt and charge–discharge window also play important roles to enhance the cyclability of Si. It is found that electrode consisting of 40 wt.% nano-Si, 40 wt.% carbon black and 20 wt.% Na-CMC (pH 3.5) displays the best cyclability, and in the voltage range from 0 to 0.8 V, after 200 cycles, its capacity can still keep 738 mAh g−1 (C/2, in 1 M LiPF6 ethylene carbonate/diethyl carbonate electrolyte, with VC-free), almost twice as that of graphite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.