Abstract

Electrospun nanofiber mats containing carbon nanoparticles in a poly(vinylidene fluoride) binder were prepared and characterized as Li-ion battery anodes. The mats exhibited an initial capacity of 161 mAh g(-1) with 91.7% capacity retention after 510 cycles at 0.1 C (1 C=372 mA gcarbon (-1)). Whereas many nanoscale electrodes are limited to low areal and/or volumetric capacities, the particle/polymer nanofiber anodes can be made thick with a high fiber volume fraction while maintaining good rate capabilities. Thus, a nanofiber anode with a fiber volume fraction of 0.79 exhibits a volumetric capacity of 55 mAh cm(-3) at 2 C, which is twice that of a typical graphite anode. Similarly, thick nanofiber mats with a high areal capacity of 4.3 mAh cm(-2) were prepared and characterized. The excellent performance of electrospun anodes is attributed to electrolyte intrusion throughout the interfiber void space and efficient Li(+) transport between the electrolyte and carbon nanoparticles in the radial fiber direction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.