Abstract
Designing high-performance anodic catalysts to drive glycerol oxidation reaction (GOR) is essential for advancing direct alcohol fuel cells. Coupling Pd with oxophilic materials is an effective strategy to enhance its intrinsic catalytic activity. In this study, we successfully synthesized Pd/Bi2Te3 catalysts with tunable compositions, using Bi2Te3 as a novel promoter, and applied them to the GOR for the first time. Electrocatalytic tests revealed that the activity of the Pd/Bi2Te3 catalysts was closely linked to their compositions. Among these catalysts, the optimized Pd/Bi2Te3-20 % showed potential to replace the commercial Pd/C catalyst, exhibiting a peak current density 5.2 times higher than that of the benchmark Pd/C catalyst. Furthermore, improved catalytic stability and faster catalytic kinetics were observed for Pd/Bi2Te3-20 %. The synergistic effect between Pd and Bi2Te3 is responsible for the high performance of the Pd/Bi2Te3-20 % catalyst.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have