Abstract
To improve the marine corrosion resistance of stainless steel coatings fabricated by high-velocity oxyfuel (HVOF) spraying with a gas shroud attachment, the molybdenum (Mo) content of stainless steel was increased to form coatings with a chemical composition of Fe balance-18mass%Cr-22mass%Ni-2∼8mass%Mo. These coatings were highly dense, with <0.1 vol.% in porosity, and less oxidized, with 0.5 mass% in oxygen content at most. The corrosion mechanism and resistance of the coatings were investigated by electrochemical measurement, chemical analysis, and statistical processing. The general corrosion resistance of the coatings in 0.5 mol/dm3 sulfuric acid was improved with increases in Mo content, and the corrosion rate could be decreased to 8.8 × 10−2 mg/cm2 per hour (∼1 mm/year) at 8 mass% Mo. The pitting corrosion resistance of the coatings in artificial seawater was improved with increases in Mo content and was superior to that of the 316L stainless steel coating. The crevice corrosion resistance of the coatings in artificial seawater was improved and the number of rust spots at 4 mass% Mo was decreased to 38% of that for the 316L coating. Accordingly, Mo is highly effective in improving the corrosion resistance of the stainless steel coatings by HVOF spraying.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.