Abstract

We report on the formation of anodic aluminum oxide (AAO) film using phytic acid (C6H18O24P6), a naturally obtainable and non-toxic organic acid electrolyte. When the temperature of the phytic acid electrolytes changes from 0 °C to 20 °C, the pore size increases, and the AAO film becomes less dense because the growth rate of the AAO film increases. In particular, when the temperature of the phytic acid electrolyte is above 15 °C, the AAO film changes dramatically. According to XRD analysis, the alpha-alumina intensity was relatively higher in the AAO film grown at low-temperatures (0, 5, 10 °C) than high-temperatures (15, 20 °C). It was possible to obtain a result that the properties were better. The microstructural change of the AAO film according to the temperature of the phytic acid electrolytes affected the breakdown voltage and the number of contamination particles that are generated, which are important properties for plasma corrosion protection coating materials. The AAO film grown in the low-temperature has the most suitable properties for use as a plasma corrosion protection coating material. Notably, the breakdown voltage of the AAO film is 0.45 kV at 14.9 μm thickness, with no observable crack on its surface after the plasma corrosion test. These findings provide significant evidence to support the application of phytic acid as an electrolyte to grow AAOfilms, and the AAOfilm grown in a phytic acid bath can be applied as a plasma corrosion protection coating material.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.