Abstract

Blue InGaN/GaN nanohole light-emitting diodes have been fabricated by soft UV-curing nanoimprint lithography, filling with CdSe/ZnS core/shell nanocrystals (NCs) as color conversion mediums. The excitonic recombination dynamics of hybrid nanohole light-emitting diodes were investigated by time-resolved photoluminescence, observing a significant reduction in the decay lifetime of excitons as a result of an efficient non-radiative resonant energy transfer, which leads to the improvement of color conversion and efficiency droop in these hybrid nanohole light-emitting diodes compared to hybrid nanocrystals/standard planar light-emitting diodes. The color-conversion efficiency and effective quantum yield of hybrid nanohole light-emitting diodes were nearly twice as much as those of hybrid standard light-emitting diodes. A model on the excitonic recombination process was proposed to explore this situation, explaining the advantages of non-radiative resonant energy transfer that avoiding energy loss associated with the intermediate light emission and conversion steps and transferring energy non-radiatively and resonantly to NCs with a higher quantum yield. The efficiency droop of hybrid nanohole light-emitting diodes was validly suppressed compared to the bare ones, even better than that of hybrid standard light-emitting diodes. It mainly results from the extraction of excess carrier concentrations in InGaN/GaN multiple quantum wells via the rapid non-radiative resonant energy transfer process under the higher injection condition, revealing a great potential to realize efficient white light emitters in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.