Abstract
Coherent homodyne detection using local laser oscillator is an important technique for applications requiring high receiver sensitivity. Conventional homodyne detection uses a continuous-wave (CW) local laser oscillator (LO) in which the only adjustable parameter is its average power. A pulsed LO with repetition rate same as the data symbol rate is proposed which provides new degree of freedom in receiver design, namely, its pulse shape and duty cycle. It is shown that pulsed LO is overall effective in enhancing receiver sensitivity compared with CW LO. We have investigated and compared the performance of coherent detection of 12.5 Gb/s binary phase-shift-keyed signals using integrated LiNbO<sub>3</sub> optical 90° hybrid with pulsed and CW LO for different receiver bandwidths. Our results showed that pulsed LO provide at least 2 dB in sensitivity improvement. We also observed that pulsed LO is effective in reshaping broadened signal pulses. Our simulation results agreed well with experiment and predicted that for a given signal and receiver bandwidth there is an optimal LO pulse width that gives maximum eye opening. Our simulation results also showed that pulsed LO is potentially effective in reducing penalty of pulse smearing as a result of beam steering impairment in free-space laser communications.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have