Abstract

This paper reports a physical and chemical surface modification technique to achieve a high tethering efficiency as well as controllability and coordinating bacterial cells. This technique was used to experimentally show multiple spin actuators, using the flagellar motion of AMB-1 bacteria. For physical surface modification, a polydimethylsiloxane (PDMS) pillar array, using a soft-lithography technique, was used. For chemical surface modification, a UV-crosslinked azido benzoic acid (ABA) modified surface was used. A high rate of tethering and adhesion of AMB-1 bacterial cells was achieved on the modified surface, and multiple spin actuation and motoring were observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call