Abstract
Abstract This paper considers the least solutions of linear matrix inequalities (LMIs) in criteria of admissibility for continuous singular fractional order systems (FOS). The new criteria are given which are strict LMIs and do not involve equality constraint and with the less LMI decision variables. With brief and simple results of this paper, the numbers of solved matrices are reduced from a pair of matrices to just a matrix in which we can analyze singular fractional order systems with completely consistent format as normal systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.