Abstract

This paper deals with a new design method for the interfaces of a-Si:H pin solar cells that improves the stability and performances of devices deposited in a single batch chamber process. The method consists in removing a deposited sacrificial layer placed between the p/i and/or i/n interfaces by etching. This layer is an absorber of defects and impurities that are introduced in the interfaces, mainly from the chamber walls cross-contamination and the substrate surface. The results achieved increase the device fill factor and short circuit current density, respectively towards 75% and 16.3 mA cm −2, with a final efficiency of about 10%, before light soaking experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.