Abstract

AbstractThe intensity of the tropical cyclone has been introduced into the Dynamical-Statistical-Analog Ensemble Forecast (DSAEF) for Landfalling Typhoon (or tropical cyclone) Precipitation (DSAEF_LTP) model. Moreover, the accumulated precipitation prediction experiments have been conducted on 21 target tropical cyclones with daily precipitation ≥ 100 mm in South China from 2012 to 2016. The best forecasting scheme for the DSAEF_LTP model is identified, and the performance of the prediction is compared with three numerical weather prediction models (the European Centre for Medium-Range Weather Forecasts, the Global Forecast System, and T639). The forecasting ability of the DSAEF_LTP model for heavy rainfall (accumulated precipitation ≥ 250 and ≥100 mm) improves when the intensity of the tropical cyclone is introduced, giving some advantages over the three numerical weather prediction models. The selection of analog tropical cyclones with a maximum intensity (during precipitation over land) equaling to or higher than the initial intensity of the target tropical cyclone gives better forecasts. The prediction accuracy for accumulated precipitation is higher for tropical cyclones with higher intensity and higher observed precipitation, with in both cases positive linear correlations with the threat score.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call