Abstract

Due to their major role in atmospheric chemistry and secondary pollutant formation such as ozone or secondary organic aerosols, an accurate representation of OH and HO2 (HOX) radicals in air quality models is essential. Air quality models use simplified mechanisms to represent atmospheric chemistry and interactions between HOX and organic compounds. In this work, HOX concentrations during the oxidation of toluene and xylene within the Regional Atmospheric Chemistry Mechanism (RACM2) are improved using a deterministic–near-explicit mechanism based on the Master Chemical Mechanism (MCM) and the generator of explicit chemistry and kinetics of organics in the atmosphere (GECKO-A). Flow tube toluene oxidation experiments are first simulated with RACM2 and MCM/GECKO-A. RACM2, which is a simplified mechanism, is then modified to better reproduce the HOX concentration evolution simulated by MCM/GECKO-A. In total, 12 reactions of the oxidation mechanism of toluene and xylene are updated, making OH simulated by RACM2 up to 70% more comparable to the comprehensive MCM/GECKO-A model for chamber oxidation simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.