Abstract

<p>As secondary organic aerosols (SOA) largely contribute to the mass of particles and may strongly affect health, it is essential to represent them as accurately as possible in air quality models (AQM). Their formation and aging involve multi-generation oxidations of numerous volatile organic compounds (VOC) combined with gas-particle partitioning processes.<br> <br>Tracking the non-linear relationship between VOC emissions and aerosol formation demands comprehensive chemical mechanisms, which take into account the whole complexity of the SOA precursor oxidation to simulate aerosols under various conditions.<br>However, the use of explicit gas-phase chemical mechanism (e.g., MCM, GECKO-A) or molecular structure-limited parameterization (e.g., VBS, SOM, FGOM) could be problematical in large-scale SOA modeling, as the former is overwhelmingly computational expensive while the latter loses tracks of VOC oxidation products after few generations and specific properties relying on aerosol formation.<br> <br>Consequently, we have developed semi-explicit SOA chemical mechanisms designed to model the SOA formation and evolution in 3D AQM. These mechanisms are reduced based on simulations of the near-explicit master chemical mechanism (MCM) performed under various conditions representative of ambient conditions and different lumping strategies. The new mechanisms integrate the crucial SOA species/reactions with different mechanism complexities. The mechanisms, therefore, preserve the complexity of the oxidation chemistry (dependence on NOx of the SOA formation, the influence of radical concentrations, humidity, photolysis, etc..) as well as the molecular composition of the organic aerosol. The mechanisms are implemented in a novel 0D aerosol model SSH-aerosol, which can use the molecular structure of lumped compounds to estimate the influence of non-ideality on SOA formation.</p><p>The current application has been conducted on the MCM degradation scheme of beta-caryophyllene (C<sub>15</sub>H<sub>24</sub>), the most representative sesquiterpene. A reduction of the average 90% CPU time and up to 92% number of S/IVOCs species has been achieved compared to the original MCM mechanism.</p>

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.