Abstract

New energy vehicles and offshore wind power industries have a high demand for sintered Nd–Fe–B magnets with high intrinsic coercivity and high corrosion resistance. In this study, the magnetic properties, anticorrosion properties, and microstructure of Nd–Fe–B sintered magnets with the intergranular addition of low-melting-point eutectic Tb68Ni32 alloy powders were investigated. The aim is to determine if the addition of Tb68Ni32 can improve these properties. A low melting-point eutectic alloy Tb68Ni32 powders was prepared as a grain boundary additive and blended with the master alloy powders prior to sintering. The coercivity of the resultant magnets gradually increases from 1468 to 2151 kA/m by adding increasing amounts of Tb68Ni32. At the same time, the remanence first increases and then slightly decreases. After studying the microstructure and elemental composition of the Tb68Ni32 added magnets, it is found that the significant increase in coercivity and the negligible reduction in remanence is due to densification, improved grain orientation, a uniform and continuous boundary phase distribution, as well as the generation of a (Nd,Pr,Tb)2Fe14B “core–shell” structure surrounding the main-phase grain. Moreover, the corrosion resistance of the magnet is greatly improved owing to the enhancement of electrochemical stability, as well as the optimization of the distribution and morphology of the intergranular phase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.