Abstract

Sugar industries generate substantial quantities of waste biomass after the extraction of sugar water from sugarcane stems, while biomass-derived porous carbon has currently received huge research attention for its sustainable application in energy storage systems. Hence, we have investigated waste sugarcane bagasse (WSB) as a cheap and potential source of porous carbon for supercapacitors. The electrochemical capacitive performance of WSB-derived carbon was further enhanced through hybridization with silicon dioxide (SiO2) as a cost-effective pseudocapacitance material. Porous WSB-C/SiO2 nanocomposites were prepared via the in situ pyrolysis of tetraethyl orthosilicate (TEOS)-modified WSB biomass. The morphological analysis confirms the pyrolytic growth of SiO2 nanospheres on WSB-C. The electrochemical performance of WSB-C/SiO2 nanocomposites was optimized by varying the SiO2 content, using two different electrolytes. The capacitance of activated WSB-C was remarkably enhanced upon hybridization with SiO2, while the nanocomposite electrode demonstrated superior specific capacitance in 6 M KOH electrolyte compared to neutral Na2SO4 electrolyte. A maximum specific capacitance of 362.3 F/g at 0.25 A/g was achieved for the WSB-C/SiO2 105 nanocomposite. The capacitance retention was slightly lower in nanocomposite electrodes (91.7-86.9%) than in pure WSB-C (97.4%) but still satisfactory. A symmetric WSB-C/SiO2 105//WSB-C/SiO2 105 supercapacitor was fabricated and achieved an energy density of 50.3 Wh kg-1 at a power density of 250 W kg-1, which is substantially higher than the WSB-C//WSB-C supercapacitor (22.1 Wh kg-1).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.