Abstract

Polyamines have emerged as a promising class of CO2 absorbents due to their remarkable sequestration capacity. However, their potential industrial application as aqueous absorbents is significantly hindered by a low regeneration efficiency and high energy consumption. To address these issues, this study investigates the use of triethylenetetramine (TETA) and ethylene glycol (EG) to develop a nonaqueous absorbent. The incorporation of EG enhances absorption performance and reduces the regeneration energy needed for TETA, whereas the high viscosity of the absorbent impedes absorption rate, amine efficiency, and regeneration efficiency. In order to enhance CO2 capture, micron-sized reaction units (SiO2@TETA-EG) were developed by encapsulating TETA solution with nanosilica. The SiO2@TETA-EG composite exhibits a large specific surface area (99 m2/g), with a porous shell structure and improved fluidity, which effectively counteracts the negative effects caused by high viscosity. Notably, SiO2@TETA-EG indicates a noticeably higher apparent rate constant of 4.29 min-1 at 323.2 K compared to the TETA-EG solution. Furthermore, SiO2@TETA-EG displays a 28.4% boost in regeneration efficiency while maintaining favorable stability in pore size and shape after regeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call