Abstract

The protection of iron-based alloy products against corrosion is fundamental to preserve their mechanical properties in aggressive environments. Hot-dip galvanizing process represents one of the most used techniques to make protective coatings for such products. In order to improve both mechanical and chemical properties of coating, metallic elements may be added to the traditional zinc bath.In the present paper, two types of improved zinc-based coating are proposed:(i) A coating obtained employing a tin addition (3% in weight);(ii) A coating obtained employing aluminium (5% in weight), tin (1% in weight) and copper (0.5% in weight) additions.Firstly, the performance of such two types of coatings is experimentally investigated through bending tests on ipersandelin steel plate specimens, treated through different bath dipping times. The intermetallic phase thicknesses of coatings are measured for each dipping time, in order to evaluate the kinetic formation. Then, a Finite Element (FE) model is proposed in order to simulate the bending behaviour of the above specimens, both employing the measured phase thickness and implementing the loading and boundary conditions of the experimental tests. A numerical non-linear static analysis is performed.A quite satisfactory agreement between experimental and numerical results is observed, especially under plastic behaviour regime.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.