Abstract

The standard method for measuring the slice thickness of magnetic resonance images uses the inclined surface of a wedge (wedge method); it is sensitive to small increases in noise because of the differentiation of the edge response function (ERF) required. The purpose of this study was to improve the wedge method by fitting a curve to the ERF. The curve-fit function was obtained by convolving an ideal ERF (a ramp function) with a Gaussian function to represent ERF blurring. Measurements of 5- and 3-mm slice thicknesses were performed on a 3T scanner using the conventional wedge method, the improved wedge method, and another standard method using an inclined slab (slab method). Subsequently, 0.5- and 0.25-mm slice thicknesses from multiple slices acquired using a three-dimensional sequence were measured using the improved wedge method. When measuring 5-mm slices, the differences in measurements obtained using the improved wedge method and the conventional slab and wedge methods were very small: <0.6% of the 5-mm slice thickness. The difference was ≤1.7% for 3-mm slices. For 0.5- and 0.25-mm slices, the mean values obtained using the improved wedge method were 0.543±0.007mm and 0.247±0.015mm, with a 1.2 and 5.9% coefficient of variation across slices, respectively. The improved wedge method is valid and potentially applicable to the measurement of sub-millimeter slice thicknesses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call