Abstract

A dense environmental barrier coating (EBC) was designed via aluminum infiltration into open pores or cracks to eliminate premature coating failure induced by the rapid permeation of oxidants through these pores. The water vapor corrosion performance of the EBC with and without aluminum infiltration was investigated at 1350 °C for 300 h under flowing 50%H2O–50%O2 gas. The infiltrated coating exhibited decrease silicon loss by more than 80%, almost no phase decomposition, and no continuous thermally grown oxide (TGO), furthermore, TGO thickness at the crack-root decreased by ∼90%. The excellent resistance is primarily attributed to the channel pores being filled with aluminum, which eliminates the rapid permeation of oxidants. In addition, a continuous refractory ytterbium aluminum garnet (YbAG) layer was formed in situ on the EBC surface, this layer exhibited sufficient stability in steam, rendering the EBC less permeable to oxidants.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.