Abstract

The proper operation of microgrids depends on Economic Dispatch. It satisfies all requirements while lowering the microgrids’ overall operating and generation costs. Since distributed generators constitute a large portion of microgrids, seamless communication between generators is essential. While guaranteeing a reliable microgrid operation, this should be achieved with the fewest losses as possible. The distributed generator technology introduces noise into the system by design. To find the best economic dispatch strategy, noise was considered in this research as a limitation in grid-connected microgrids. The microgrid’s performance was improved, and the proposed technique also showed increased resilience. A virtual synchronous generator (VSG) control approach is proposed with a noiseless consensus-based algorithm to improve the power quality of microgrids. Voltage and frequency regulation modules are the foundation of the VSG paradigm. The synchronous generator’s second-order equation (hidden-pole configuration) was also used to represent the voltage of the stator and rotor motion. This study compared changes in power, frequency, and voltage for the microgrid by utilizing the described control approach using MATLAB. According to the findings, this method aids in controlling load and noise variations and offers distributed generators an efficient control strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call