Abstract

The cube method proposed by Deville and Tillé (2004) enables the selection of balanced samples: that is, samples such that the Horvitz–Thompson estimators of auxiliary variables match the known totals of those variables. As an exact balanced sampling design often does not exist, the cube method generally proceeds in two steps: a “flight phase” in which exact balance is maintained, and a “landing phase” in which the final sample is selected while respecting the balance conditions as closely as possible. Deville and Tillé (2005) derive a variance approximation for balanced sampling that takes account of the flight phase only, whereas the landing phase can prove to add non-negligible variance. This paper uses a martingale difference representation of the cube method to construct an efficient simulation-based method for calculating approximate second-order inclusion probabilities. The approximation enables nearly unbiased variance estimation, where the bias is primarily due to the limited number of simulations. In a Monte Carlo study, the proposed method has significantly less bias than the standard variance estimator, leading to improved confidence interval coverage.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call