Abstract
Extreme learning machine (ELM) is one of the single hidden layer feed-forward neural networks (SLFNs). It has been widely used for multiclass classification because of the preferable generalization performance and its faster learning speed. The parameters (including the input weights, hidden biases and the number of hidden neurons) have great impact on the generalization performance of ELM classifier. An improved variable-length particle swarm optimization (IVPSO) algorithm is proposed in this paper to automatically select the optimal structure of ELM classifier (the number of hidden neurons with the corresponding input weights and hidden biases) for maximizing the accuracy of validation data and minimizing the norm of output weights. It has been verified in the experimental results that the new algorithm IVPSO-ELM significantly increases the testing accuracy of many classification problems that we choose in UCI machine learning repository.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.