Abstract

In this work, a pump-probe experiment is used to study the ultrafast dynamics of heat transfer in thin gold films and gold nanostructures on glass substrates, following local heating by ultrashort laser pulses. Full spectrotemporal differential reflectivity and transmission maps were obtained for different film thicknesses (30, 50, 80, 150, and 200 nm) and different laser fluences $(0.38 \mathrm{to} 9.5\phantom{\rule{0.16em}{0ex}}{\mathrm{Jm}}^{\ensuremath{-}2})$. For arrays of gold nanorods, the two orthogonal probe polarizations were also acquired. We propose an improved model for these phenomena based on a modified two-temperature model that integrates thermal conduction and the three-dimensional finite element method model to link the spatiotemporal temperature maps to the spectrotemporal optical response maps. The impact of an underlying titanium adhesion layer is reported. Excellent agreement between numerical and experimental data for both the gold films and the nanostructures is shown.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.