Abstract

Heat transfer in thin films treats phonons as particles in the Boltzmann Transport Equation (BTE). However, phonons only allow slow thermal response. Rapid film heat transfer is possible provided films are allowed to promptly emit non-thermal electromagnetic (EM) radiation. Quantum mechanics (QM) used in the response of nanoparticles (NPs) is extended to thin films through the theory of QED induced EM radiation. Here QED stands for quantum electrodynamics. Atoms in thin films are generally under EM confinement at vacuum ultraviolet (VUV) levels that by QM are restricted to vanishing small levels of thermal kT energy, and therefore heat gain cannot be conserved by an increase in temperature. Heat is low frequency EM energy, and therefore the gain is conserved by VUV emission following QED induced up-conversion to the VUV confinement frequency of the film. The effective conductivity appears reduced only because EM emission is excluded from the heat balance. If included, the film maintains bulk conductivity through the thickness. The generality of QED induced EM radiation in thin films is extended to NPs that enhance heat transfer in nanofluids and as nanocatalysts increase the rate of chemical reactions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.