Abstract

Interference Hyperspectral Images (IHI) data acquired by Interference Hyperspectral Imaging Spectrometer exhibit many vertical interference stripes. The above characteristics will affect the application of dictionary learning and compressed sensing theory used on IHI data. According to the special characteristics of IHI data, many algorithms are proposed to separate the interference stripes layers and the background layers of IHI data in 2015, but the interference stripes layers are still not clean enough and the ideal background layers without interference stripes are also difficult to be obtained. In this paper, an improved total variation (TV) algorithm based on adaptive multiplier is proposed for IHI data decomposition. The value of the Lagrange multiplier is adaptive according to the unidirectional characteristics of IHI data. The proposed algorithm is used on Large Spatially Modulated Interference Spectral (LSMIS) images and is proved to provide better experimental results than the current algorithms both visually and quantitatively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.