Abstract

Methods to increase transformation efficiency and yields of transgenic Anthurium andraeanum Linden ex. André hybrids were sought while effecting gene transfer for resistance to the two most important pests, bacterial blight (Xanthomonas axonopodis pv. dieffenbachiae) and nematodes (Radopholus similis and Meloidogyne javanica). Differentiated explant tissues, embryogenic calli, and comingled mixtures of the two were transformed with binary DNA plasmid constructs that contained a neomycin phosphotransferase II (nptII) selection gene with a nos promoter and terminator. Explants included ≈1-cm long laminae, petioles, internodes, nodes, and root sections from light- and dark-grown in vitro plants. Bacterial blight resistance genes were NPR1 from Arabidopsis, attacin from Hyalophora cecropia, and T4 lysozyme from the T4 bacteriophage. For nematode resistance, rice cystatin and cowpea trypsin inhibitor genes were used. Cocultivation with Agrobacterium tumefaciens strains EHA105, AGLØ, and LBA4404 ranged from 2 to 14 days. Over 700 independent, putatively transformed lines were selected with 5 and 20 mg·L−1 geneticin (G418) for cultivars Midori and Marian Seefurth, respectively. Putative transgenic lines were selected 1 to 11.5 months, but on average 5.2 to 8.4 months, after cocultivation depending on the tissue type transformed. Significantly more embryogenic calli (one line per 5 mg calli) produced transgenic lines than did explants (one line per 143 mg explants) (P < 0.004) from ≈30 mg of tissue. Calli grew selectively from all explant types, but the type of explant from which each selection was made was not recorded because root, internode, and petiole explants were difficult to discern by the time calli developed. Shoots formed 3 months after calli were transferred to light. Non-transgenic control and transgenic ‘Marian Seefurth’ formed flower buds in the greenhouse ≈28 months after cocultivation. The plants resembled commercially grown plants from a private nursery. No non-transformed escapes were detected among the selections screened for NPTII by enzyme-linked immunosorbent assay and polymerase chain reaction (PCR). The selections were positive for transgenes as assayed by PCR and Southern hybridizations. Southern blots showed single-copy insertions of the NPR1 regulatory gene. The ability to produce large quantities of independent transgenic lines from embryogenic calli in a relatively short time period should enable researchers to evaluate the effectiveness of any transgene by screening numerous anthurium lines for improved performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.