Abstract
Dynamic contrast-enhanced (DCE) T(1)-weighted magnetic resonance imaging (MRI) is a powerful tool capable of providing quantitative assessment of contrast uptake and characterization of microvascular structure in human gliomas. The kinetics of the bolus injection doped with increasing concentrations of gadopentate dimeglumine (Gd-DTPA) depends on tissue as well as pulse sequence parameters. A simple method is described that overcomes the limitation of relative signal increase measurement and may lead to improved accuracy in quantification of perfusion indices of glioma. Based on an analysis of the contrast behavior of spoiled gradient-recalled echo sequence; a parameter K with arbitrary unit 5.0 is introduced, which provides a better approximation to the differential T(1) relaxation rate. DCE-MRI measurements of relative cerebral blood volume (rCBV) and cerebral blood flow (rCBF) were calculated in 25 patients with brain tumors (15=high-grade glioma, 10=low-grade glioma). The mean rCBV was 6.46 +/- 2.45 in high-grade glioma and 2.89 +/- 1.47 in the low-grade glioma. The rCBF was 3.94 +/- 1.47 in high-grade glioma while 2.25 +/- 0.87 in low-grade glioma. A significant difference in rCBF and rCBV was found between high- and low-grade gliomas. This simple and robust technique reveals the complexity of tumor vasculature and heterogeneity that may aid in therapeutic management especially in nonenhancing high-grade gliomas. We conclude that the precontrast medium steady-state residue parameter K may be useful in improved quantification of perfusion indices in human glioma using T(1)-weighted DCE-MRI.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.