Abstract

Acridines are one of the most important nitrogen-containing heterocycle systems and have many applications in the therapeutic field. However, the synthesis of acridine-based scaffolds is not always straightforward. Herein, we report the optimization of two multi-step synthetic routes towards 4,9-diaminoacridines and 4-aminoacridines, which have shown promising antiplasmodial properties. The improved synthesis pathways make use of greener, simpler, and more efficient methods, with less reaction steps and increased overall yields, which were doubled in some cases. These are impactful results towards future approaches to the chemical synthesis of acridine-based compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.