Abstract

Bipolar redox-based resistive random-access memory cells are intensively studied for new storage class memory and beyond von Neumann computing applications. However, the considerable variability of the resistance values in ON and OFF state as well as of the SET voltage remains challenging. In this paper, we discuss the physical origin of the significant reduction in the switching variability of HfO2-based devices achieved by the insertion of a thin TiO x layer between the HfO2 layer and the oxygen exchange metal layer. Typically, HfO2 single layer cells exhibit an abrupt SET process, which is difficult to control. In contrast, self-compliance effects in the HfO2/TiO x bilayer devices lead to an increased stability of SET voltages and OFF-state resistances. The SET process is gradual and the RESET becomes abrupt for higher switching currents. Comparison of the experimental data with simulation results achieved from a physics-based compact model for the full description of the switching behavior of the single layer and bilayer devices clearly reveal three major effects. The TiO x layer affects the temperature distribution during switching (by modifying the heat dissipation), forms an additional series resistance and changes the current conduction mechanism in the OFF state of the bilayer device compared to the single layer device.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.