Abstract
Surface-patterned platinum microelectrodes insulated with 300 nm thick fused silica were fabricated using contact photolithography. These electrodes exhibit low noise and were used for monitoring single vesicle exocytosis from chromaffin cells by constant potential amperometry as well as fast-scan cyclic voltammetry. Amperometric spike parameters were consistent with those obtained with conventional carbon fiber electrodes. Catecholamine voltammograms acquired with platinum electrodes exhibited redox peaks with full width at half-maximum of approximately 45 mV, much sharper than those of carbon fiber electrode recordings. The time course of voltammetrically measured release events was similar for platinum and carbon fiber electrodes. The fused-silica-insulated platinum electrodes could be cleaned and reused repetitively and allowed incorporation of micrometer precision surface-patterned poly-D-lysine. Poly-D-lysine-functionalized devices were applied to stimulate mast cells and record single release events without serotonin preloading. Microfabricated platinum electrodes are thus able to record single exocytotic events with high resolution and should be suitable for highly parallel electrode arrays allowing simultaneous measurements of single events from multiple cells.
Accepted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have