Abstract
To handle imbalanced datasets in machine learning or deep learning models, some studies suggest sampling techniques to generate virtual examples of minority classes to improve the models' prediction accuracy. However, for kernel-based support vector machines (SVM), some sampling methods suggest generating synthetic examples in an original data space rather than in a high-dimensional feature space. This may be ineffective in improving SVM classification for imbalanced datasets. To address this problem, we propose a novel hybrid sampling technique termed modified mega-trend-diffusion-extreme learning machine (MMTD-ELM) to effectively move the SVM decision boundary toward a region of the majority class. By this movement, the prediction of SVM for minority class examples can be improved. The proposed method combines α-cut fuzzy number method for screening representative examples of majority class and MMTD method for creating new examples of the minority class. Furthermore, we construct a bagging ELM model to monitor the similarity between new examples and original data. In this paper, four datasets are used to test the efficiency of the proposed MMTD-ELM method in imbalanced data prediction. Additionally, we deployed two SVM models to compare prediction performance of the proposed MMTD-ELM method with three state-of-the-art sampling techniques in terms of geometric mean (G-mean), F-measure (F1), index of balanced accuracy (IBA) and area under curve (AUC) metrics. Furthermore, paired t-test is used to elucidate whether the suggested method has statistically significant differences from the other sampling techniques in terms of the four evaluation metrics. The experimental results demonstrated that the proposed method achieves the best average values in terms of G-mean, F1, IBA and AUC. Overall, the suggested MMTD-ELM method outperforms these sampling methods for imbalanced datasets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.